

The Yin and Yang of Memory
Overcommitment in Virtualization

 The VMware vSphere 4.0 Edition

YP Chien, PhD, CISSP

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

!"#$%&'(#)%"*

Yin & Yang is an ancient Chinese belief about the existence of two complementary forces in the
universe — Yang represents everything positive or “bright” and Yin stands for the opposite or
everything negative or “dark.” Everything has both Yin and Yang aspects and we can't ignore one
or the other.

We see the same Yin & Yang effects in virtualization. For example, we can look at consolidation
ratios; the higher the consolidation ratios, the better the server utilization, reduced power
consumption and hence fewer physical servers to manage. On the other hand, the indiscriminate
quest for higher consolidation ratios can cause performance problems and worse, such as
increasing the business risks due to hardware failure.
One of the key tools to drive higher consolidation ratios is to “oversubscribe” or overallocate
computing resources such as system memory. With a new generation of processors that sport 6, 8
or more cores and the capability of supporting 20 or more virtual machines in a VMware vSphere
ESX host, the limiting factor for scaling up further is now physical memory. Overallocating
memory resources could eventually cause memory overcommitment, which now plays a greater
role than ever in driving up consolidation ratios.
Memory overcommitment in this guide means that the total memory size consumed by all running
virtual machines exceeds the total size of the physical server memory. VMware ESX provides
memory allocation and management capabilities to achieve efficient memory utilization while
maintaining memory performance. Still, there will be instances where the total VM memory
requirements may sufficiently exceed available physical memory to negatively impact workload
performance.
In this whitepaper, we will use controlled tests to demonstrate how VMware ESX manages
memory while under memory pressure, and see how ESX strikes a balance between VM
performance and memory reclamation. We will also show potential problems that could impede
performance when memory requirements greatly exceed available physical memory.

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

+,-%$.*+/"/0,-,"#*)"*1+2/$,*345*6,$7,$*

DDyynnaammii cc MMeemmoorr yy AA ll ll oo ccaa tt ii oonn

ESX dynamically manages the amount of physical memory allocated to each VM based on:

• VM usage or need
• System load
• Priority

While a VM assumes it can access all of the memory that is configured, ESX allocates memory to
the VM only when it is actually needed.
ESX continues to allocate additional memory to a VM as long as there is sufficient physical
memory available to satisfy the VM workload requirements. But what happens when there is a
memory shortage and not enough free memory to satisfy workload demands from the VM? When
memory contention arises, ESX will reclaim unused memory (Idle Memory) from VMs that have
less need and redistribute it to VMs that require more memory. With scarce memory resources,
memory pages will be reclaimed, preferentially from VMs that are not actively using their memory
allocation or from VMs that have low memory utilization. If we factor out utilization from this
scenario, ESX will allocate memory based on priority as defined by Shares.

DDyynnaammii cc MMeemmoorr yy RReecc ll aammaa tt ii oonn

ESX utilizes the following methods in sequence to reclaim idle memory from VMs when it is
under memory pressure:

• Memory Ballooning
• Memory Compression, new in vSphere 4.1
• VMkernel Swapping

Under memory pressure, ESX prefers memory ballooning over VMkernel swapping to force VM
to give up memory pages and let them use their own memory management processes to rebalance
memory requirements. When memory ballooning is not possible or insufficient to meet the
memory needs, in vSphere 4.0, ESX utilizes VMkernel swapping as the last resort. ESX reclaims
VM memory by paging out memory to a swap file on disk storage, without any guest VM
involvement. This swapping will certainly impact VM performance, especially in cases where this
swapping causes a VM to further increase Windows page swapping.
For details on how memory ballooning and VMkernel swapping work, please refer to:

http://www.kingston.com/branded/pdf_files/Final_esx3_memory.pdf.
In the following sections, we will show Memory Ballooning and VMkernel Swapping in action
and how they interact with each other to ease ESX memory pressure. We will also examine their
associated performance penalties and show why Swapping must be avoided if possible. In vSphere
4.1, instead of swapping, ESX will store the swapped out pages in a compression cache if these
pages can be compressed, which in effect avoids the long latencies caused by swapping to disk.
Since our test environment is based on VMware vSphere 4.0, the new Memory Compression
feature will not be covered here but will be covered in a future white paper.

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

EESSXX MMeemmoorr yy RReecc ll aammaa tt ii oonn SS tt aa tt ee ss

ESX dynamically adjusts memory allocations when changes in the amount of free memory cross
predefined thresholds. ESX uses four thresholds to reflect different reclamation states: high, soft,
hard and low, in which the thresholds default to 6%, 4%, 2%, and 1% of server memory,
respectively. The current ESX memory state can be viewed by running the esxtop utility.

ESX should generally be in the high memory state, indicating free memory is sufficient and no
reclamation is needed. With sufficient memory resources, VMs can continue to request memory
and keep their allocated memory.

When ESX is in the soft state, ESX starts to reclaim memory by first using memory ballooning,
and in the case of vSphere 4.0 and earlier, resorting to VMkernel swapping only in cases where
ballooning is not possible or insufficient to reclaim enough memory. In both the hard state and the
low state, ESX must resort to VMkernel swapping to forcibly reclaim memory.

Since the memory ballooning reclaiming processes take time to execute and might not respond fast
enough to address transient memory pressures, VMkernel swapping can still occur as a result. We
will later show in our experiments that ESX started memory reclamation before it reached the soft
state, and initiated memory ballooning and even VMkernel swapping while in the high memory
state. This scenario may be due to the fact that the ESX memory state reporting lags the actual real
time memory condition that ESX sees and reacts to address.

WWhhee rree ii ss aa ll ll tt hhee VVMM mmeemmoorr yy??

The efficiency of VM memory utilization will be used by ESX to find preferential candidates for
memory reclamation. We will show using the following example to illustrate how we can
determine the active, or working set, memory, idle memory, allocated/consumed memory and
finally configured memory for a VM. This will help us better appreciate ESX’s memory
reclamation strategies and see how idle memory is involved to determine VMs’ memory
utilization efficiency.

The VM memory usage can be best illustrated by the following screenshot of the vSphere client in
the “Hosts and Clusters” view with the usyp-win3k003 VM selected, and by selecting the Resource
Allocation tab :

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 1. Memory Resource display in vSphere client

Figure 1 shows that the usyp-win3k001 VM has 4096MB of Configured memory, which was set
when the VM was created. The Host Memory of 4223MB is actually the amount of memory that
will be allocated to this VM, which includes the 4096MB of configured memory plus 53MB of
overhead memory.

The total Consumed memory of 1.4GB as shown in Figure 1 is the sum of 1.35 GB of private
memory plus 53 MB of Overhead Consumption. All of the 1.4GB Consumed memory in this case
is backed by ESX with physical memory.

The Shared memory of 2.65 GB in Figure 1 results from boot time optimizations in vSphere.
Windows OS zeroes the memory assigned to it during boot time as part of the initialization
process. vSphere shares most of such zeroed pages resulting in significant memory savings. Later,
when windows OS or the applications in the VM writes to the memory pages that were previously
zeroed, the page sharing is broken. Furthermore, the Active memory of 81MB is the amount of
memory activity sampled and detected by the ESX memory management system. The amount of
memory that is actively utilized vs. the amount that is consumed by the VM will determine what
ESX terms as idle memory.

!

!

!

!

!

!

!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

The esxtop utility can also be used to obtain the same memory usage statistics shown in Figure 1
for usyp-win3k001. Figure 2 shows the memory usage, memory ballooning and VMkernel
swapping statistics for the running VMs:

Figure 2. Memory usage & ballooning statistics from esxtop

In the top right corner of Figure 2, we can see that the ESX is in high memory state with over 11
GB of free physical memory. Furthermore, there were no memory ballooning and/or VMkernel
swapping activities as indicated by the MEMCTL and SWAP statistics, which show zero values.

To help interpret the esxtop memory statistics as related to VM memory usage, we note that all
Windows Operating Systems zero all their memory pages during the boot process. ESX recognizes
this zeroing mechanism and doesn’t allocate physical memory to these pages. Since these pages
were zeroed out by the guest OS anyway, ESX pools all of them under shared pages (SHRD), and
the shared saved (SHDSVD) statistics. These statistics only indicate that the memory pages should
have been allocated to specific VM but were not as the VM did not need them yet. So, the actual
amount of physical memory ESX allocated to the usyp-win3k001 VM is the difference between the
granted memory (4096 MB - the GRANT statistics) and the zeroed memory (2713 MB- the
ZERO statistics), which results in allocated memory of 1383MB or 1.35GB, the same number
shown in Figure 1 as private memory.

!
!
!
!
!
!
!
!
!
!
!
!
!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

345*+,-%$.*8/99%%")"0*/"&*42/::)"0*'"&,$*#;,*;%%&*

With memory overcommitment, we can aggressively drive up consolidation ratios and hope that
TPS, memory ballooning and, if necessary, VMkernel swapping bail us out during a peak
utilization period. However, with excessive memory overcommitment, ESX will be forced into
aggressively reclaiming memory, possibly starving VM for memory and forcing the VM
Operating Systems to resort to paging. When this happens, VM's performance will likely be
negatively impacted.
To illustrate the potential impacts of memory ballooning and VMkernel swapping on performance,
we performed several memory load experiments on a HP ProLiant® DL 360 G6 server with 32GB
of Kingston server memory and two Intel Xeon E5540 quad-core processors. All tests were
conducted using 12 Windows 2003 VMs provisioned through the same VM template configured
with 4GB of memory.
The testing objectives were to:

• Examine ESX dynamic memory reallocation in action and understand how
memory ballooning, VMkernel swapping and TPS impact the performance of each
individual VM and the overall system.

• Show why memory configuration using reservations or limits could help improve
performance on an individual VM but may have adverse effects on other VMs and
the overall system.

TThhee MMeemmoorr yy LLooaadd GGeennee rraa tt oo rr UU tt ii ll ii tt ii ee ss

In order to simulate high memory demands that could force memory ballooning and VMkernel
swapping, we developed a set of utilities and scripts to generate workloads with varying memory
sizes and load duration requirements. To help track and analyze the impact on VM performance,
we also developed scripts to extract memory counter logs from the esxtop and Windows Perfmon
utilities.

The Memory Load Generator utilities put together for this article consist of the following
components:

• Memory Load Generator utilities – a set of Windows executables that generate workloads
with configurable memory sizes and load duration

• PowerShell scripts with VMware PowerCLI snapins that invoke and remotely run the
memory load utilities in the Windows 2003 VM

• PowerShell scripts with VMware PowerCLI snapins that power-up, power-down and
vMotion any of the 12 Windows 2003 VMs remotely (without using the interactive
vSphere client program).

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

We designed the test components to make them:

• Configurable – The Memory Load Generator program is fully configurable. This allows
us to exercise ESX memory management functions with high transient memory demands
of our choosing.

• Manageable – We can execute programs remotely and without having to interactively log
into the VM under test. Furthermore, the PowerShell scripts can communicate to the
vSphere vCenter server (through the PowerCLI snapins) to remotely execute any program
in a VM.

• Measureable – With vSphere 4.0 and later, VMware performance counters are included
in the Windows Perfmon tool (when vmware-tools is installed). This allows for a
performance view both internally and externally to the Windows VM. Furthermore, the
PowerShell scripts can start/stop both the esxtop and the Windows Performance monitor
to collect memory performance counters for offline analysis. The details on using esxtop
and Windows Performance monitor in batch mode, and all their associated counters are
beyond the scope of this white paper.

• Repeatable – All memory workload generation and log collecting steps are scripted and
executed as PowerShell scripts to reduce manual data collection errors.

To show the flexibility of this Memory Load Generator System, here is an example of how we
generate an arbitrary workload with memory size of 500 MB with the following timings:

• Ramp up the memory load of 500MB request in 60 seconds
• Generate a non-zero CPU load
• Maintain the workload with 2 minutes of high memory consumption activity to simulate

the memory usage or low idle memory
• Exit the memory load generator program, which causes the memory to be released back to

the OS

The command syntax is as follows:

LoadStart.bat <memory load size in MB> <%CPU load> < Memory Activity - N, L, M or H>
<Ramp up speed in 3-sec increments> <total elapse time in seconds>

To simulate the above workload, we will run the following command, on the usyp-win3k09 VM:

 LoadStart.bat 500 20 H 20 180

Figure 3 shows the Windows Memory Available Mbytes counter (using Perfmon), which is being
collected as the memory load program is being executed, showing the 500MB reduction in the
available memory during the duration of the test:

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 3. Example of running the Memory Load Generator

EESSXX TTeess tt SSyyss tt eemm IInn ii tt ii aa ll LLooaadd aanndd VVMM MMeemmoorr yy AAcc tt ii vv ii tt ii ee ss

We ran the tests with 12 identically-configured Windows 2003 VMs, each with 4GByte of
configured memory on the ESX server, which results in 60% of memory overcommit as shown in
Figure 4b. We employed the Memory Workload Generator utility to produce a total of 21GB of
memory usage on the ESX server, and with about 11 GB of free memory as shown in Figure 4a.

Figure 4a. Memory Usage before starting load test

Using the load generator, we provisioned the first three VMs, usyp-win3k001 to usyp-win3k003,
with no memory activity (-N option) to simulate high idle memory. We shall see in our test results
in the later sections that these three VMs will be the first targets for memory reclamation by the
ESX during a memory shortage. The next 5 VMs, usyp-win3k004 to usypwin3k008, were
configured with medium memory workload activities so that we could examine the potential
impact of idle memory under memory pressure. We configured the last 4 VMs, usyp-win3k009 to
usyp-win3k0012 to simulate high transient memory demands that would force ESX into memory
pressure.

The resulting memory load and each VM’s memory activities are shown in Figure 4b, which
utilizes esxtop utility statistics. The esxtop MEM overcommit average statistics shown on the first
line of Figure 4b indicates that there are 0.59 or 59% of memory overcommit level in the last 1
minute, 5 minutes and 15 minutes, respectively.

"#$$!
""$$!
"%$$!
"&$$!
"'$$!
"($$!
")$$!

!!"#$%&'()*+,-!./0123!45678698/:.;3</=:

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 4b. Memory Activities before starting test

To simulate the effects of memory pressure, we ran 4 additional memory workloads totaling
9.5GB for a period of 12 minutes on top of the four VMs as follows:

VM Memory Load Size -
MBytes

Load Pattern

usyp-win3k009 2,500 Starts immediately and lasts 11 min.
usyp-win3k0010 2,500 Starts immediately and lasts 12 min.
usyp-win3k0011 2,000 Starts one min. later and lasts 8 min.
usyp-win3k0012 2,500 Starts 4 min. later and lasts 5 min.

The deliberate delay to initiate the last two workloads and the slow ramp up of the last workload
on usyp-win3k0012 allows us to capture enough log data to study how ESX manages its dynamic
memory reallocation during a memory shortage. The aggregate workload of 9.5GB should starve
ESX memory and drive ESX free memory close to the 6% high memory threshold. At such time,
we would expect ESX to start memory ballooning and even VMkernel swapping to reallocate
memory. The result of the simulated memory load "storm" patterns for each of the 4 VMs (which
is obtained by calculating the memory reductions caused by the memory load using the VM’s
Windows “Available Memory” Perfmon counter) is shown in Figure 5. The "Total Memory
Loads" shown is the sum of the memory workloads for the 4 VMs.

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 5. The Test Memory Workload Patterns

MMeemmoorr yy BBaa ll ll oooonn ii nngg aanndd SSwwaapppp ii nngg TTeess tt RReessuu ll tt ss

Once we start the test workload, we observe in Figure 6a using esxtop that ESX started the
memory reclamation process via memory ballooning on the usyp-win3k003 VM first. From the
esxtop screenshot shown in Figure 6a, the MCTLSZ statistics of usyp-win3k003 VM shows that
1.81 MB of physical memory has been reclaimed by the balloon driver and 83.71 MB of physical
memory is going to be reclaimed. Furthermore, we see ballooning inflated for two of the VMs up
to 2661 MB or 65% of the 4GB configured memory. Note the default percentage of configured
memory that can be reclaimed from each VM by the balloon driver is 65% and this amount is
indicated by the MCTLMAX statistics.

$!

*$$$!

#$$$!

"$$$!

%$$$!

&$$$!

'$$$!

($$$!

)$$$!

+$$$!

*$$$$!
+,
%$

,$
$!

+,
%$

,*
)!

+,
%$

,"
'!

+,
%$

,&
%!

+,
%*

,*
#!

+,
%*

,"
$!

+,
%*

,%
)!

+,
%#

,$
'!

+,
%#

,#
%!

+,
%#

,%
#!

+,
%"

,$
$!

+,
%"

,*
)!

+,
%"

,"
'!

+,
%"

,&
%!

+,
%%

,*
#!

+,
%%

,"
$!

+,
%%

,%
)!

+,
%&

,$
'!

+,
%&

,#
%!

+,
%&

,%
#!

+,
%'

,$
$!

+,
%'

,*
)!

+,
%'

,"
'!

+,
%'

,&
%!

+,
%(

,*
#!

+,
%(

,"
$!

+,
%(

,%
)!

+,
%)

,$
'!

+,
%)

,#
%!

+,
%)

,%
#!

+,
%+

,$
$!

+,
%+

,*
)!

+,
%+

,"
'!

+,
%+

,&
%!

+,
&$

,*
#!

+,
&$

,"
$!

+,
&$

,%
)!

+,
&*

,$
'!

+,
&*

,#
%!

+,
&*

,%
#!

+,
&#

,$
$!

+,
&#

,*
)!

+,
&#

,"
'!

+,
&#

,&
%!

+,
&"

,*
#!

+,
&"

,"
$!

+,
&"

,%
)!

!
"
#
$
%
&'

(
$
)
*'

+
,'
!
-&
.
"
/'

--./012345"6$$+-789:;<-789:;<!=:>?@! --./012345"6$$*$-789:;<-789:;<!=:>?@!

--./012345"6$$**-789:;<-789:;<!=:>?@! --./012345"6$$*#-789:;<-789:;<!=:>?@!

A:B>C!789:;<!=:>?@!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 6a. Memory Balloon Statistics

As noted earlier, the Memory Ballooning process takes time and may not reclaim memory fast
enough for ESX, forcing ESX to resort to VMkernel Swapping (as in vSphere 4.0) to actively
reallocate memory during crunch times. Figure 6b demonstrates that- ESX reclaimed memory via
memory ballooning and VMkernel swapping on all 3 VMs: usyp-win3k001 to usyp-win3k003. We
also notice from Figure 6b, excluding usyp-win3k001, that both usyp-win3k002 and
usyp-win3k003 have up to the maximum of 2661 MB of balloon memory. This is the result of
provisioning the first 3 VMs with no memory activities at the start of our test, making those VMs
the primary candidates for ESX to use for memory reclamation. Since their idle memory was much
higher than the other nine VMs, ESX chose them for memory reclamation ahead of the other nine
VMs. In fact, our test shows that none of the other nine VMs have memory being reclaimed by the
ESX (shown in Figure 6b), demonstrating how idle memory plays an important role in memory
reclamation.

Figure 6b. Memory Ballooning and VMkernel Swapping Activities

In order to analyze the impact of memory ballooning and VMkernel swapping on server
performance, we need to examine VM memory being reduced due to memory ballooning and the

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

magnitude and duration of memory paging activities by the VMs’ OS due to insufficient physical
memory.

Based upon esxtop memory counter logs for a period of around 20 minutes, Figure 7 shows overall
activities for ESX’s free memory, the system wide memory balloon size and the reclaimed
memory via Ballooning for each VM:

Figure 7. Memory Balloon Activities

ESX starts memory ballooning to reclaim memory from the usyp-win3k003 VM when free
memory drops to around 2.7GB.
The memory balloon activity shown in Figure 7 is consistent with what we have seen in Figure 6b.
In other words, ESX reclaimed memory via memory ballooning and VMkernel swapping only
from three VMs: usyp-win3k001 to usyp-win3k003. We also noted that the balloon memory of all
VMs stayed inflated long after the memory pressure was gone. We will revisit this scenario and
discuss the conditions under which the balloon memory will deflate in a later section.

TThhee vvmmwwaarree -- tt oooo ll ss WWiinnddoowwss PPee rr ffmmoonn ll oogg ccoouunn tt ee rr ss

The esxtop memory counter logs only provide performance information related to the ESX
virtualization layer which is external to the VM. The memory counter logs which we collected via
Windows Perfmon include (if the vmware-tools driver has been installed) both the VM internal
counters as well as those related to the virtualization layer, e.g. “\\host\VM Memory\Memory
Ballooned in MB”. This dual-view monitoring allows to us to identify the internal performance
bottlenecks that may be caused by memory ballooning and/or VMkernel swapping.

Figure 8 shows available memory and its internal paging to disk activities as seen by the
usyp-win3k003 Windows OS:

$!

#$$$!

%$$$!

'$$$!

)$$$!

*$$$$!

*#$$$!

+,
%$

,$
*!

+,
%$

,%
%!

+,
%*

,#
(!

+,
%#

,*
$!

+,
%#

,&
"!

+,
%"

,"
'!

+,
%%

,*
)!

+,
%&

,$
*!

+,
%&

,%
%!

+,
%'

,#
(!

+,
%(

,*
$!

+,
%(

,&
#!

+,
%)

,"
&!

+,
%+

,*
)!

+,
&$

,$
*!

+,
&$

,%
%!

+,
&*

,#
(!

+,
&#

,$
+!

+,
&#

,&
#!

+,
&"

,"
&!

+,
&%

,*
)!

+,
&&

,$
$!

+,
&&

,%
"!

+,
&'

,#
'!

+,
&(

,$
+!

+,
&(

,&
#!

+,
&)

,"
%!

+,
&+

,*
(!

*$
,$
$,
$

*$
,$
$,
%

!
*$

,$
*,
#

!
*$

,$
#,
$

*$
,$
#,
&

!
*$

,$
",
"

D@<E2FGH"I$$*J-789KBC!7L<B8@!
D@<E2FGH"I$$#J-789KBC!7L<B8@!
D@<E2FGH"I$$"J-789KBC!7L<B8@!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 8. usyp-win3k003 VM Memory Activities

Even though memory ballooning may be seen as undesirable, depending on the type of
application, Figure 8 shows that the VM’s performance may not suffer since there was little or no
paging activity resulting from the balloon’s inflation to reduce the VM memory. The question now
is whether the VM's performance has been affected by VMkernel swapping. We will examine the
potential performance penalties of VMkernel swapping in the next section.!

MMoorree aabboouu tt VVMMkkee rrnnee ll SSwwaapppp ii nngg aanndd tt hhee VVMM SSwwaapp FF ii ll ee

For each VM, ESX sets up a single swap file for use in the event of memory shortage. The VM
swap file is not created until the VM is powered on, and it is deleted when the VM is powered
down. The VM swap file can be identified by its file extension of vswp and resides in the same
disk folder where all the other VM files are located, by default. The VM swap file will not be used
unless ESX needs to swap the VM’s memory pages.

ESX normally creates a VM swap file with the same size as the VM's configured memory size, if
there is no memory reservation configured. Since the VM swap file resides on the same disk
storage as all the VM disks, we must consider potential disk usage when provisioning the storage
for VMs, especially when Thin Disk Provisioning is configured. Thin Disk Provisioning is a new
feature in VMware vSphere 4 that overcommits disk storage so that VM disk storage is allocated
on demand, similar to the way dynamic memory allocation works on the ESX system.

IT administrators may not pay much attention to the VM swap file or even be aware of its
existence, since the swap file is handled by ESX behind the scenes. With Thin Disk Provisioning,
over-provisioning disk storage could lead to a situation where a VM can’t be powered on due to

$!

$!

$!

$!

$!

*!

*!

*!

*!

*!

*!

$!

&$$!

*$$$!

*&$$!

#$$$!

#&$$!

"$$$!

"&$$!
+,
%$

,$
#!

+,
%$

,"
#!

+,
%*

,$
#!

+,
%*

,"
#!

+,
%#

,$
#!

+,
%#

,"
#!

+,
%"

,$
#!

+,
%"

,"
#!

+,
%%

,$
#!

+,
%%

,"
#!

+,
%&

,$
%!

+,
%&

,"
%!

+,
%'

,$
%!

+,
%'

,%
)!

+,
%(

,*
)!

+,
%(

,%
)!

+,
%)

,*
)!

+,
%)

,%
)!

+,
%+

,*
)!

+,
%+

,%
)!

+,
&$

,*
)!

+,
&$

,%
)!

+,
&*

,*
)!

+,
&*

,%
)!

+,
&#

,*
)!

+,
&#

,%
)!

+,
&"

,*
)!

+,
&"

,%
)!

+,
&%

,*
)!

+,
&%

,%
)!

+,
&&

,*
)!

+,
&&

,%
)!

+,
&'

,*
)!

+,
&'

,%
)!

+,
&(

,*
)!

+,
&(

,%
)!

+,
&)

,*
)!

+,
&)

,%
)!

+,
&+

,*
)!

+,
&+

,%
)!

*$
,$
$,
*)

!
*$

,$
$,
%)

!
*$

,$
*,
*)

!
*$

,$
*,
%)

!
*$

,$
#,
*)

!
*$

,$
#,
%)

!
*$

,$
",
*)

!

0
)
"
/
1
2
"
3'

!
4
&
.
"'

--./012345"6$$"-789:;<-MN>GC>OC8!7L<B8@! --./012345"6$$"-P7!789:;<-789:;<!L>CC::H8?!GH!7L!

--./012345"6$$"-P7!789:;<-789:;<!/F>EE8?!GH!7L! --./012345"6$$"-789:;<-1>Q8@R@8K!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

lack of disk space for the swap file to be created. With servers now accommodating up to 1TB of
storage, enabling VM with up to 255GB of memory, Thin Disk Provisioning must be carefully
planned out.
The general consensus is that VMkernel swapping is undesirable due to its high latency and should
be avoided if possible. In the following test, we will show how swapping affects system
performance.

PPee rr ff oo rrmmaannccee MMoonn ii tt oo rr ii nngg ff oo rr MMeemmoorr yy SSwwaapppp ii nngg

The first performance metric we will look at is the %SWPWT or %Swap Wait statistic
(collected from the esxtop utility in batch mode) which indicates the percentage of time that the
VM is waiting for ESX to swap memory. High %SWPWT values indicate that a VM’s CPU time
was mostly spent waiting for the ESX VMKernel to swap memory, definitely indicating
performance issues. Other performance counters of interest include SWR/s (Swap Read
Mbytes/sec), SWW/s (Swap Write Mbytes/sec) and VM internal Pages/sec. When greater than
zero, all these counters indicate some form of memory overcommitment issue that needs further
analysis.

Figure 9 shows the swapping activities on usyp-win3k002 and usyp-win3k003 as related to
Swapped Memory and % Swap Wait time.

Figure 9. Performance as related to VMkernel Swapping

The % Swap Wait (as read on the right axis of the chart) indicates that there were times that the
two VMs spent as high as 90 percent of their CPU time waiting for VMkernel swapping (during

$!

#$!

%$!

'$!

)$!

*$$!

*#$!

$!

#$$!

%$$!

'$$!

)$$!

*$$$!

*#$$!

+,
%$

,$
*!

+,
%$

,"
#!

+,
%*

,$
#!

+,
%*

,"
"!

+,
%#

,$
%!

+,
%#

,"
&!

+,
%"

,$
&!

+,
%"

,"
'!

+,
%%

,$
'!

+,
%%

,"
(!

+,
%&

,$
(!

+,
%&

,"
)!

+,
%'

,$
)!

+,
%'

,"
+!

+,
%(

,*
$!

+,
%(

,%
$!

+,
%)

,*
*!

+,
%)

,%
*!

+,
%+

,*
#!

+,
%+

,%
#!

+,
&$

,*
"!

+,
&$

,%
%!

+,
&*

,*
%!

+,
&*

,%
&!

+,
&#

,*
&!

+,
&#

,%
'!

+,
&"

,*
(!

+,
&"

,%
(!

+,
&%

,*
)!

+,
&%

,%
)!

+,
&&

,*
+!

+,
&&

,%
+!

+,
&'

,#
$!

+,
&'

,&
*!

+,
&(

,#
*!

+,
&(

,&
#!

+,
&)

,#
#!

+,
&)

,&
"!

+,
&+

,#
"!

+,
&+

,&
%!

*$
,$
$,
#%

!
*$

,$
$,
&&

!
*$

,$
*,
#&

!
*$

,$
*,
&'

!
*$

,$
#,
#'

!
*$

,$
#,
&(

!
*$

,$
",
#(

!
*$

,$
",
&)

!

5
2
6
)
7'

8
)
+
.'

2
6
)
7
7
"
*'
!
-&
.
"
/'

D@<E2FGH"I$$#J-/F>EE8?!7L<B8@! D@<E2FGH"I$$"J-/F>EE8?!7L<B8@!

--D@<E28@S$%TIGHQ@B:HTC>O-789:;<-/F>E!.@8?!7L<B8@! D@<E2FGH"I$$#J-U!/F>E!3>GB!

D@<E2FGH"I$$"J-U!/F>E!3>GB!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

which memory was swapped out to disk). When a VM spends most of its CPU time waiting for
swap memory, its performance is likely to be severely impacted.

TThhee YY ii nn && YYaanngg oo ff MMeemmoorr yy RReessee rr vvaa tt ii oonnss

Without proper planning and monitoring, there could be negative performance impacts resulting
from excessive memory overcommitment. Looking at Figure 7 as the starting point, we need to
ask: What if these three VMs are business-critical applications which must meet guaranteed
service levels? To reduce the impacts of memory overcommitment, we must minimize VMkernel
swapping as well as memory ballooning. Without increasing the amount of physical memory in
the server, a memory reservation is the usual way to guarantee a VM will have the set memory
capacity available for its use.

A VM administrator has the option to control the allocation of memory to certain business-critical
VM by using memory reservation. In fact with VMware vSphere, we could configure a VM's
memory resource allocation using the following 3 parameters:

• Memory Shares
• Memory Reservation
• Memory Limit

These parameters can be set at either the Resource Pool or the VM level. We will not cover
Memory Shares in this White Paper. Figure 10 shows where we can configure these parameters at
the VM level:

Figure 10. Individual VM Memory Resource Configuration Options

Memory Reservation specifies the guaranteed minimum amount of physical memory that will be
allocated to the VM even during memory shortage. By default, this value is zero and ESX will
have full control in allocating the VM memory up to its maximum configured memory. This can
be illustrated by the following diagram:

Note that the VM memory will still be allocated on demand by ESX and starting from zero after
power up, even if a virtual machine has a memory reservation. Furthermore, if a VM has not yet

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

accessed its full reservation, ESX can still allocate the unused memory to other virtual machines.
Only after a virtual machine has accessed its full memory reservation, will the amount of memory
reserved be retained. The reserved memory will not be reclaimed by the ESX, even if the VM
becomes idle and stops accessing memory.
When a VM has a memory reservation, we note the following:

• The VM will have at least the amount of physical memory specified by the
memory reservation value plus memory that will not be reclaimed by memory
ballooning or VMkernel swapping.

• The maximum memory that could be reclaimed by memory ballooning is still the
same: Configured Memory * 65%

• The size of the swap file that will be created by ESX when the VM powers up:
 (Configured Memory – Memory Reservation)

By setting a memory reservation, we can alleviate the potential performance impact of memory
ballooning and/or VMkernel swapping by having the preset amount of memory always available to the
VM. To show the memory allocation of ESX by using a Memory Reservation, we reran our previous
memory load test, this time with 1.8GB of Memory Reservation configured on the usyp-win3k003 VM.

Figure 11 shows that usyp-win3k003 has a 1.8GB Memory Reservation:

Figure 11. Memory Resource Allocation with Memory Reservation

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

After we configure usyp-win3k003 with a memory reservation of 1.8GB, its swap file size is
reduced by the same 1.8GB:

Figure 12. With Memory Reservation, the Swap File size is reduced

Figure 13 shows the memory activities and timing relationship between ESX free memory and
Memory Ballooning. After running the same memory load test shown in Figure 5, and collecting
memory log counters using the esxtop utility, we can see that, as expected, usyp-win3k003 did not
have any memory being reclaimed during the memory shortage period. However, the
improvements in memory performance of one single VM (usyp-win3k003) using memory
reservation had significant side effects, causing memory ballooning on the other 10 VMs as shown
below:

Figure 13. Memory Ballooning Activities

$!

#$$$!

%$$$!

'$$$!

)$$$!

*$$$$!

*#$$$!

#$
,"
),
$#

!
#$

,"
),
"#

!
#$

,"
+,
$"

!
#$

,"
+,
""

!
#$

,%
$,
$%

!
#$

,%
$,
"%

!
#$

,%
*,
$&

!
#$

,%
*,
"&

!
#$

,%
#,
$'

!
#$

,%
#,
"(

!
#$

,%
",
$(

!
#$

,%
",
")

!
#$

,%
%,
$)

!
#$

,%
%,
"+

!
#$

,%
&,
$+

!
#$

,%
&,
%$

!
#$

,%
',
*$

!
#$

,%
',
%*

!
#$

,%
(,
*#

!
#$

,%
(,
%#

!
#$

,%
),
*"

!
#$

,%
),
%%

!
#$

,%
+,
*%

!
#$

,%
+,
%&

!
#$

,&
$,
*&

!
#$

,&
$,
%'

!
#$

,&
*,
*(

!
#$

,&
*,
%(

!
#$

,&
#,
*)

!
#$

,&
#,
%)

!
#$

,&
",
*+

!
#$

,&
",
%+

!
#$

,&
%,
#$

!
#$

,&
%,
&$

!
#$

,&
&,
#*

!
#$

,&
&,
&#

!
#$

,&
',
##

!
#$

,&
',
&"

!
#$

,&
(,
#"

!
#$

,&
(,
&%

!
#$

,&
),
#&

!
#$

,&
),
&&

!
#$

,&
+,
#'

!
#$

,&
+,
&'

!
#*

,$
$,
#(

!
#*

,$
$,
&(

!
#*

,$
*,
#)

!
#*

,$
*,
&+

!
#*

,$
#,
#+

!
#*

,$
",
$$

!

!
-&
.
"
/'

D@<E2FGH"I$$*J-789KBC!7L<B8@! D@<E2FGH"I$$#J-789KBC!7L<B8@!
D@<E2FGH"I$$%J-789KBC!7L<B8@! D@<E2FGH"I$$&J-789KBC!7L<B8@!
D@<E2FGH"I$$(J-789KBC!7L<B8@! D@<E2FGH"I$$)J-789KBC!7L<B8@!
D@<E2FGH"I$$+J-789KBC!7L<B8@! D@<E2FGH"I$$*$J-789KBC!7L<B8@!
D@<E2FGH"I$$**J-789KBC!7L<B8@! D@<E2FGH"I$$*#J-789KBC!7L<B8@!
--D@<E28@S$%TIGHQ@B:HTC>O-789:;<-V;88!7L<B8@! --D@<E28@S$%TIGHQ@B:HTC>O-789:;<-789KBC!WD;;8HB!7L<B8@!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

One interesting observation to note is that all memory balloons were later deflated except the two
on usyp-win3k001 and usyp-win3k002; this is due to the fact that ESX will not deflate the memory
balloon(s) unless there are memory requests or memory activities from affected VM, even when
ESX is no longer under memory pressure.
Now, let's look at the Memory Swapped and %Swap Wait in Figure 14. Now, a substantial
percentage of usyp-win3k004 CPU times is spent waiting for the VMKernel swapping as a result
of setting the memory reservation on usyp-win3k003.

Figure 14. VMkernel Swapping Activities

To summarize: Even though we could improve the performance of specific VMs by setting
memory reservation, our test results show that there may be unintended and adverse effects on the
rest of the system. Furthermore, using memory reservation to improve performance did not solve
the root cause of the system’s performance issues: memory overcommitment.

$!

*$!

#$!

"$!

%$!

&$!

'$!

($!

)$!

+$!

*$$!

$!

#$$!

%$$!

'$$!

)$$!

*$$$!

*#$$!

*%$$!

#$
,"
),
$#

!
#$

,"
),
")

!
#$

,"
+,
*&

!
#$

,"
+,
&*

!
#$

,%
$,
#)

!
#$

,%
*,
$&

!
#$

,%
*,
%#

!
#$

,%
#,
*)

!
#$

,%
#,
&&

!
#$

,%
",
"#

!
#$

,%
%,
$)

!
#$

,%
%,
%&

!
#$

,%
&,
##

!
#$

,%
&,
&)

!
#$

,%
',
"&

!
#$

,%
(,
*#

!
#$

,%
(,
%+

!
#$

,%
),
#&

!
#$

,%
+,
$#

!
#$

,%
+,
"+

!
#$

,&
$,
*&

!
#$

,&
$,
&#

!
#$

,&
*,
#+

!
#$

,&
#,
$&

!
#$

,&
#,
%#

!
#$

,&
",
*+

!
#$

,&
",
&&

!
#$

,&
%,
"#

!
#$

,&
&,
$+

!
#$

,&
&,
%'

!
#$

,&
',
##

!
#$

,&
',
&+

!
#$

,&
(,
"'

!
#$

,&
),
*#

!
#$

,&
),
%+

!
#$

,&
+,
#'

!
#*

,$
$,
$#

!
#*

,$
$,
"+

!
#*

,$
*,
*'

!
#*

,$
*,
&"

!
#*

,$
#,
#+

!
#*

,$
",
$'

!

5
2
6
)
7'

8
)
+
.'

2
6
)
7
7
"
*'
!
-&
.
"
/'

D@<E2FGH"I$$*J-/F>EE8?!7L<B8@! D@<E2FGH"I$$#J-/F>EE8?!7L<B8@!

D@<E2FGH"I$$%J-/F>EE8?!7L<B8@! --D@<E28@S$%TIGHQ@B:HTC>O-789:;<-/F>E!.@8?!7L<B8@!

D@<E2FGH"I$$*J-U!/F>E!3>GB! D@<E2FGH"I$$#J-U!/F>E!3>GB!

D@<E2FGH"I$$%J-U!/F>E!3>GB!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

!

"#$%&'!()$)*!+!,%-.*)%/!%&!0&%1-#$2*

The opposite of memory reservation is the memory limit. Just like a memory reservation, a
memory limit is one of the parameters that can be set when configuring a VM memory resource at
both the VM and/or the Resource Pool level. Memory limit has been one of the major causes of
headaches for most Administrators facing unexplainable memory ballooning and/or VMkernel
swapping activities — even in systems with no memory overcommitment.

Memory limit specifies the maximum physical memory that could be allocated to a particular VM.
By default, the memory limit is set to the size of the configured memory. If memory limit is set
lower than the configured memory, the VM memory layout is as follows:

Figure 15. Memory Configuration with Memory Limit

An important insight here is to look at how ESX ensures that a VM with a memory limit will not
consume more physical memory than its limit. If a VM tries to access more memory than its set
limit, ESX will initiate memory reclamation by way of memory ballooning (within the VM itself)
and/or VMkernel swapping.
From the VM’s perspective, it has no notion about the memory limit being set and still assumes it
has the entire configured memory that it could utilize. ESX must resort to memory ballooning and
even VMkernel swapping to counter the increases in the VM’s memory utilization that could
potentially rise over the memory limit.
To demonstrate the memory limit impact on performance, we will set the memory limit of usyp-
win3k001 VM to 1024MB with a configured memory size of 4GB. In this case, we would expect
ESX to initiate memory ballooning and VMkernel swapping to reclaim VM memory to counter the
request for memory over the 1024MB memory limit. But since ESX can only inflate the memory
balloon up to 65 percent of the configured memory or 2661MB in this case, the additional memory
pressure must be relieved by swapping to disk!
With this unintended impact in mind, we tested how ESX enforces this memory limit by driving 2
GB of memory workload on usyp-win3k001 for a test period of 3 minutes. To see where the ESX
memory ballooning comes into play, we set up the workload to ramp up its full load in 15 seconds.

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

Figure 16. How Memory Limit is enforced through Memory Ballooning

Figure 16 shows that, as the Memory Used (shown in light blue) passes the 1024MB memory limit
threshold, ESX starts memory ballooning. The memory balloon counters the increase of VM
memory usage and forces the VM to relinquish free memory, eventually bringing down the VM
memory (e.g., "\VM Memory\Memory Used") to the level set by the memory limit.
Due to the excessive memory workload over the memory limit that we injected during the 3-
minute period, the size of the memory balloon added to the increased memory workload which
quickly depleted the available memory ("\Memory\Available Mbytes") shown in dark blue. We see
extensive VM memory paging and VMKernel swapping. These results demonstrate why we
should not use memory limit without first considering the usage case and understanding the
potential performance penalties memory limit could cause.
Since the VM’s OS has no awareness of any memory limit, the OS and all its applications may be
impacted when a memory limit is exceeded, resulting in the ESX using memory ballooning and
VMkernel swapping as counter-measures.

!
!
!
!
!
!
!

$!

*$$!

#$$!

"$$!

%$$!

&$$!

'$$!

($$!

)$$!

+$$!

$!

&$$!

*$$$!

*&$$!

#$$$!

#&$$!

"$$$!

"&$$!

%$$$!
*&

,%
#,
&#

!

*&
,%
",
$*

!

*&
,%
",
*$

!

*&
,%
",
*+

!

*&
,%
",
#)

!

*&
,%
",
"(

!

*&
,%
",
%'

!

*&
,%
",
&&

!

*&
,%
%,
$%

!

*&
,%
%,
*"

!

*&
,%
%,
##

!

*&
,%
%,
"*

!

*&
,%
%,
%$

!

*&
,%
%,
%+

!

*&
,%
%,
&)

!

*&
,%
&,
$(

!

*&
,%
&,
*'

!

*&
,%
&,
#&

!

*&
,%
&,
"%

!

*&
,%
&,
%"

!

*&
,%
&,
&#

!

*&
,%
',
$*

!

*&
,%
',
*$

!

*&
,%
',
*+

!

*&
,%
',
#)

!

*&
,%
',
"(

!

*&
,%
',
%'

!

*&
,%
',
&&

!

*&
,%
(,
$%

!

*&
,%
(,
*"

!

*&
,%
(,
##

!

*&
,%
(,
"*

!

*&
,%
(,
%$

!

*&
,%
(,
%+

!

*&
,%
(,
&)

!

*&
,%
),
$(

!

*&
,%
),
*'

!

*&
,%
),
#&

!

*&
,%
),
"%

!

*&
,%
),
%"

!

*&
,%
),
&#

!

*&
,%
+,
$*

!

0
)
9
"
/
1
2"
3'

!
"
#
$
%
&'

+
,'
!
-&
.
"'

--./012345"6$$*-789:;<-MN>GC>OC8!7L<B8@! --./012345"6$$*-P7!789:;<-789:;<!L>CC::H8?!GH!7L!

--./012345"6$$*-P7!789:;<-789:;<!=G9GB!GH!7L! --./012345"6$$*-P7!789:;<-789:;<!/F>EE8?!GH!7L!

--./012345"6$$*-P7!789:;<-789:;<!.@8?!GH!7L! --./012345"6$$*-789:;<-1>Q8@R@8K!

TThhee VVMMwwaarree vvSSpphheerree©© 44..00 EEddiitt iioonn

©2010 Kingston Technology Corporation, 17600 Newhope Street, Fountain Valley, CA 92708 USA
All rights reserved. All trademarks and registered trademarks are the property of their respective owners. Printed in the USA MKP-339

4'--/$.*

In this white paper, we demonstrated how ESX allocates memory based on VM memory activities,
system workload and priority. When there is enough free memory or when ESX is in the high
memory state, VM will always be allocated physical memory on demand. When memory is in
shortage, ESX prefers memory ballooning over VMkernel swapping since swapping to disk
imposes heavy performance penalties on the system. Because memory ballooning may take time
and may not be sufficient to reclaim enough memory, our tests show that vSphere 4.0 starts
VMkernel swapping to reclaim memory instead. Our tests show that memory ballooning may not
be necessarily harmful to system performance but it does indicate that the ESX server has memory
overcommitment issues requiring attention.
To explore memory overcommitment issues resulting from memory ballooning and VMkernel
swapping, we ran several memory load tests on 12 identically-configured Windows 2003 server
VMs with an average of 65% memory utilization running on a HP ProLiant DL 360 G6 system
loaded with 32GB of memory. In order to exercise the system under various memory load
conditions to see how ESX dynamic memory reallocation works, we utilized our own internally
developed memory load generator utilities combined with sets of VMware PowerCLI scripts to
automate all the testing.
Our testing demonstrated that using a memory reservation or memory limit could improve
“localized” VM performance but did have negative impacts on the overall system performance
while not addressing the root cause of the memory performance issues –excessive memory
overcommitment. Thus, the use of memory reservation and memory limit for VMs should be
carefully thought out so that peak VM workloads can be accommodated without unintentionally
impacting individual VMs and even system-wide performance.
Understanding how ESX memory overcommitment works will aid administrators to better balance
the Yin & Yang of configuring VM memory. We illustrated how performance could be affected by
memory ballooning and worse, VMkernel swapping and/or VM Paging. Therefore, it is essential
to not arbitrarily overcommit and size VM memory without first performing careful capacity
planning and performance monitoring.

Thanks to:
Chethan Kumar and Fei Guo of VMware for their technical review, feature guidance and support

From Kingston:
Richard Kanadjian for his help in the majority of the technical review and editing.
Joe Maloney for his help in technical review and editing.
Edward Shen for his major contribution in developing the testing tools and testing scripts.

<<

 /ASCII85EncodePages false

 /AllowPSXObjects true

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (None)

 /CalRGBProfile (Adobe RGB \0501998\051)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 0.76000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /ColorConversionStrategy /sRGB

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /ColorImageDownsampleThreshold 1

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 100

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 150

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /DetectBlends true

 /DetectCurves 0.10000

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 0.76000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /GrayImageDownsampleThreshold 1

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 150

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 300

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /ConvertToRGB

 /DestinationProfileName (sRGB IEC61966-2.1)

 /DestinationProfileSelector /UseName

 /Downsample16BitImages true

 /FlattenerPreset <<

 /ClipComplexRegions true

 /ConvertStrokesToOutlines true

 /ConvertTextToOutlines false

 /GradientResolution 150

 /LineArtTextResolution 300

 /PresetName ([Medium Resolution])

 /PresetSelector /MediumResolution

 /RasterVectorBalance 0.75000

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks true

 /IncludeHyperlinks true

 /IncludeInteractive true

 /IncludeLayers false

 /IncludeProfiles false

 /MarksOffset 9

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing false

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo false

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages false

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

