
Memory and SSD Optimization
In Windows Server 2012 and SQL Server 2012

Memory and SSD Optimization

1

Contents

Windows Server 2012 Overview 2

Memory and Storage Optimization in Hyper-V 3

 Understanding NUMA Impact 3

 Virtual NUMA Support in Hyper-V 2012 4

 Hyper-V Dynamic Memory 5

 Storage Optimization in Hyper-V 7

 Optimizing VDI Workloads 8

Optimizing Memory and I/O with SQL Server 2012 11

 Memory Behavior in SQL Server 11

 Determining Memory Requirements for SQL Server 12

 Optimizing Storage Performance in SQL Server 13

 Virtualizing SQL Server 14

Summary 16

 About the Authors 17

Memory and SSD Optimization

2

Windows Server 2012 Overview
Windows Server 2012 represents the most advanced server operating system that Microsoft has ever
released. Virtually every aspect of the OS has been enhanced, including Active Directory, IIS and File
Services. However, the newest, most exciting changes are advancements to Hyper-V.

Microsoft entered the mainstream server virtualization market in 2008 with the first release of Hyper-V in
Windows Server 2008. It was their first attempt at a type-1 Hypervisor, and while it was met with optimism,
its overall capabilities fell short of expectations.

In 2010, Microsoft released Windows Server 2008 R2, which included an updated Hyper-V component.
Hyper-V R2, and the subsequent release of Service Pack 1 added many capabilities and features that
brought the solution closer to being competitive with VMware’s platform.

With the release of Windows Server 2012, Microsoft has closed the gap on VMware vSphere’s capacity
and feature set, and has added some functionality that is missing from VMware vSphere 5. Below is a
comparison of capacity differences in Hyper-V R2 vs. Server 2012 Hyper-V vs. VMware vSphere 5.

Table 1, Capacity differences in Hyper-V R2, Hyper-V 2012 and VMware vSphere 5

The table above shows that Server 2012 Hyper-V is capable of driving large virtualization loads, and
in particular, is able to manage significantly more memory and more virtual machines than previous
iterations of Hyper-V. Therefore, proper optimization of memory and storage configurations is more critical
than ever to achieve optimal performance.

	
 Windows	
 Server	

2008	
 R2	
 Hyper-­‐V	

Windows	
 Server	

2012	
 Hyper-­‐V	

VMware	
 vSphere	

5.0	

Maximum	
 Hyper-­‐V	
 Host	
 Logical	

Processors	

64	
 320	
 160	

Physical	
 Memory	
 Addressed	
 by	

Hypervisor	

1	
 TB	
 4	
 TB	
 2	
 TB	

Maximum	
 Virtual	
 CPUs	
 per	
 Host	
 512	
 2,048	
 2,048	

Virtual	
 CPUs	
 per	
 Virtual	
 Machine	
 4	
 64	
 32	

Memory	
 per	
 Virtual	
 Machine	
 64	
 GB	
 1	
 TB	
 1	
 TB	

Total	
 Active	
 VMs	
 per	
 Host	
 384	
 1,024	
 512	

Maximum	
 Hosts	
 per	
 Cluster	
 16	
 64	
 32	

Maximum	
 VMs	
 per	
 Cluster	
 1,000	
 4,000	
 3,000	

	

Memory and SSD Optimization

3

Memory and Storage Optimization in Hyper-V
Memory is most commonly the #1 constraint in virtualization density; CPU speeds and core counts have
continued to escalate, but memory remains the limiting factor in the number of virtual machines running
per virtualization host, whether that platform is based on VMware or Microsoft.

Both companies have memory management capabilities included in their Hypervisor, and both use
a diff erent approach to optimize the use of memory in the system. VMware allocates the confi gured
memory to virtual machines at power on and then attempts to recover memory later using the techniques
below. Hyper-V, however, takes the opposite approach and grants systems a smaller amount of RAM at
start up, and then dynamically adds more memory as running VMs require it. Both techniques accomplish
the same goal: Optimize the use of available memory while providing VMs what they need to run
eff ectively.

Understanding NUMA Impact
CPUs run much faster than the memory attached to the system. Legacy computer designs only
allowed a single CPU to access the memory bus at any single time, so as CPU and core counts increased,
performance was stunted because processes running on diff erent processors couldn’t access memory
simultaneously.

Non-Uniform Memory Access (NUMA) is a memory architecture used in modern servers and addresses this
shortcoming by breaking up CPUs and system memory into nodes, where each CPU socket is attached to
a unique memory controller and related DIMMs. CPUs are able to access their local NUMA node memory
faster than non-local memory in another node. All nodes are interconnected so that processes in one
node may access memory in a remote node, albeit with a performance penalty. This is referred to as
NUMA spanning.

Figure 1, NUMA node and memory

Memory and SSD Optimization

4

Newer operating systems, including Windows Server 2012, are NUMA-aware and will automatically allocate
memory to processes from the local NUMA node to optimize performance. However, NUMA can have a
significant impact on virtualization; virtual machines are simply running processes on the Hypervisor, and
can use a significant amount of memory.

The NUMA boundary is calculated by dividing the memory in the server by the number of CPU sockets in
the system. According to Microsoft , performance is reduced by almost 8% when the amount of memory
allocated to a virtual machine is larger than the NUMA boundary.

By default, Hyper-V assigns the NUMA node preference every time the VM is started. When selecting
a NUMA node, Hyper-V will attempt to allocate a node that has enough memory to support the entire
running virtual machine. Virtual machines run optimally when the virtual CPUs and the VM’s memory on
the same NUMA node.

For best performance, ensure that virtual machines on a Hyper-V host are allocated the correct amount
of memory in relation to the NUMA boundary. Lower memory capacity and core-count hosts may have
challenges running higher memory capacity VMs.

Finally, Hyper-V hosts also have a preference to enable or disable NUMA spanning. Spanning is enabled
by default so that the most memory can be allocated to all running virtual machines, even if it means VM
memory may span nodes. To optimize performance for sensitive workloads, spanning may be disabled in
the Hyper-V settings of the host.

Virtual NUMA Support in Hyper-V 2012
Hyper-V 2012 introduces the concept of NUMA for virtual machines. A VM’s virtual CPUs and memory are
grouped into virtual NUMA nodes based on the underlying physical topology of compute and memory
resources.

 Hyper-V leverages a standard ACPI model for presenting this topology so that any NUMA-aware operating
system, including Windows and Linux, can leverage virtual NUMA. Virtual NUMA means that guest
operating systems are able to self-optimize NUMA scheduling based on their configuration alignment to
the host’s hardware NUMA architecture.

Virtual NUMA is configured automatically in a virtual machine based on the underlying hardware
configuration on the system where the VM was created. However, this information can be customized in
the interface for specific needs.

Memory and SSD Optimization

5

Figure 2, Virtual NUMA confi guration in a VM

Finally, Hyper-V 2012 contains specifi c controls when VMs need to be migrated between hosts with
dissimilar NUMA topologies.

While Virtual NUMA is a great addition to Hyper-V, it only exacerbates the need to ensure the proper
amount of memory and the placement of memory in the physical hosts is optimized. Since virtual
machines receive their default virtual NUMA confi guration from the underlying hardware, incorrect NUMA
optimization will result in less-than-optimal performance.

Hyper-V Dynamic Memory
While VMware vSphere allocates all memory to VMs at startup and then attempts to reclaim unused
memory though transparent page sharing and ballooning, Hyper-V’s Dynamic Memory takes a diff erent
approach to managing memory. Hyper-V does not swap any VM memory to disk, so in earlier versions of
Hyper-V, memory confi gured for a virtual machine was 100% allocated at startup. This caused memory to
be a considerable bottleneck in Hyper-V virtual machine density.

Dynamic Memory is a recent new feature of Hyper-V and aims to automatically right size virtual machine
memory. Dynamic Memory treats all memory in the host system as a single pool and allocates memory to
running virtual machines automatically based on demand.

Rather than allocate all of the VM memory at startup, Hyper-V provides confi guration options to set
diff erent parameters for startup RAM, minimum RAM and maximum RAM. This allows administrators to
tune the memory characteristics of the virtual machines and how they operate in Hyper-V.

Memory and SSD Optimization

6

Startup Memory

Minimum Memory

Maximum Memory

Memory Buff er

Memory Weight

With Windows Server 2012 Hyper-V and Dynamic Memory, virtual
machines are able to start up with less memory than they may need
in typical operation, and Dynamic Memory will add RAM to the VM as
required. Likewise, it’s feasible to confi gure a VM with more Startup
Memory, and then allow the VM to reduce the amount of memory
used after the guest operating system is running. The Memory Buff er
setting indicates how much “headroom” is necessary between the
current allocation and the current demand.

Dynamic Memory allows a Hyper-V host to start and run more virtual
machines than otherwise possible with the total physical memory in
the host. This also allows memory to be smartly allocated to virtual
machines based on just-in-time demand. If there is less physical
memory in the host than current demand, Hyper-V employs a form of ballooning in which a component in
the Hyper-V guest OS integration services coordinates with the host to analyze and free unused memory
and return it to the host for reallocation to other VMs.

Dynamic Memory does not work in all circumstances. Applications that perform their own memory
management, such as SQL Server, may not make good candidates for Dynamic Memory. These
applications continue to consume memory as cache space up to the maximum available, resulting in VMs
that are always running at their confi guration maximum. At the very least, consider making application
adjustments to prevent these applications from artifi cially infl ating memory demand.

The amount of memory presented to
the guest operating system when the
VM is started on the Hyper-V host

The minimum amount of physical
memory that the VM must be using; may
be lower than Startup Memory

The maximum amount of physical
memory that the VM may be allocated
by Dynamic Memory

The amount of memory headroom
between the amount of memory
granted and the amount of memory
currently needed by the guest operating
system

The importance of memory for a virtual
machine compared to other VMs on the
host; VMs with higher weight are given
preferential access to physical RAM

Memory and SSD Optimization

7

Dynamic Memory may also adversely affect applications where memory allocation occurs only at startup. In
these cases, the VM may not run at an optimum performance level as the true nature of memory demand
may not be exposed to Dynamic Memory. In these cases, VMs will need to be configured with a higher
Startup RAM value and a lower Minimum RAM value. This will allow the VM to start with a higher amount of
memory, but then reduce memory consumption when the Dynamic Memory is active and recognizes the
VM does not need that amount of RAM.

While this is great functionality to right-size virtual machine memory use, it should not be confused with
over-commitment of memory. Hyper-V Dynamic Memory provides memory oversubscription, not over-
commitment; the latter implies there is not enough memory to properly run the workload. Dynamic
Memory is not a substitute for good, sound memory management. Administrators must have an
understanding of the memory requirements of virtualized systems. Performance Monitor counters and
System Center Operations Manager are excellent ways to gain knowledge on the true memory needs of
systems in Hyper-V.

Storage Optimization in Hyper-V

Storage Spaces
Windows Server 2012 offers a new storage subsystem called Storage Spaces, in which internal and external
drives can be configured as storage pools. Storage Spaces can be configured from these pools and leverage
features like thin-provisioning, disk hot-add and RAID.

Hyper-V Smart Paging
Windows Server 2012 introduces a new feature called Smart Paging, which is intended to improve the
reliability of virtual machine restart operations when Dynamic Memory is used. When virtual machines are
configured with a lower Minimum value than the Startup value, it’s possible that in a restart situation, the
VM may not start if ample free RAM is not available for the VM to meet the Startup RAM requirement. To
mitigate this, Server 2012 can leverage Smart Paging to make up the difference between Minimum RAM
and Startup RAM. Smart Paging is used to bridge the gap between Minimum memory and Startup memory.

Smart Paging creates a page file on the Hyper-V host storage equal in size to the difference of the VM’s
Minimum and Startup RAM. When the VM is restarted and there is not enough memory to allocate the
Startup RAM value, a pagefile will be used to create virtual memory to make up the difference. The pagefile
is only created if Smart Paging is needed to restart the VM and is only used until the Dynamic Memory
driver loads in the VM; at that point the VM memory allocation is reduced to the Minimum RAM number
and the pagefile is deleted. To minimize performance impact, Smart Paging is only used in the following
circumstances:

	 •			A	virtual	machine	is	restarted
	 •			There	is	no	available	physical	memory	in	the	host
	 •			No	memory	can	be	reclaimed	from	other	running	virtual	machines

Memory and SSD Optimization

8

Smart Paging is not used when a VM is being administratively started from a “stopped” state. It is only
used when VMs are restarted. It is also not used when failing VMs over in a Hyper-V cluster when a host
failure occurs. Smart Paging is only intended to prevent the case where a VM is restarted and memory is
constrained. The VM that was running is able to return to a running state.

To optimize performance, use SSD storage, such as Kingston’s Enterprise Grade SSDNow products, for
placement of the Smart Paging files. This ensures that in the event of a memory-starved system, VM restart
operations happen as fast as possible.

Guest-Paging Optimization
Operating systems leverage virtual memory to extend the amount of available memory in the system.
Paging is never optimal, but in some cases it may be unavoidable. Hyper-V Dynamic Memory operates on
the principle of guest paging. Hyper-V does not swap VM memory to disk; rather is puts pressure on the
guest operating system through ballooning, which in turn allows the guest to best decide which contents
in memory should be sent to the Windows paging file.

For systems where memory may fall under contention, breaking guest paging files to a different VHD that
resides on SSD will significantly improve performance. For high-performance critical workloads, leveraging
SSD for guest paging may overcome temporary issues when physical host memory becomes scarce.

Optimizing VDI Workloads
VDI is a challenging solution to any organization. On a smaller scale, it is easily managed, but when grown
to larger implementations, the challenges of memory and I/O management become paramount. VDI is
a very different solution than server virtualization. The lessons learned when virtualizing a datacenter full
of servers do not translate to a successful VDI plan. The I/O characteristics of VDI are a far cry from server
workloads.

User experience is the number one determining factor in the success of a VDI implementation. Users
expect the performance of a VDI solution to be at least equal, if not better, than their traditional desktop
experience. Therefore, ensuring good performance is critical.

Memory and VDI
The primary purpose of a desktop is to provide a means for a user to gain access to and use applications,
so applications are the determining factor in memory consumption of the desktop.

Dynamic Memory will increase the consolidation ratio of VDI workstations on a single server because the
fluctuating memory needs of one virtual desktop to the next will allow some systems to use more memory
that others and will automatically allocate the RAM required. Consider the following example of a Hyper-V
host with 96GB RAM in both a static memory and Dynamic Memory configuration.

Memory and SSD Optimization

9

Table 2, Dynamic Memory effect on VDI density

In the static memory example, the highest number of VMs possible on the host is about 46 or 47 VMs (47
x 2GB = 94GB). In the Dynamic Memory example, the same configuration and workload can support up
to 78 VMs since only the memory required for each VM is allocated to it (78 x 1.2GB = 94GB). Dynamic
Memory with Hyper-V in VDI scenarios can increase the number of VMs per host significantly.

Storage and VDI
While memory will improve density for VDI, storage I/O performance is the number one technical reason
that VDI fails. Traditional desktop storage consists of a single consumer-grade hard drive responsible for
a single operating system and user. While the performance of these mechanical drives is relatively poor,
users don’t see a problem because drives are able to keep up with the demands of one user. However,
when multiplied by thousands of users, the I/O demand for simple things like logging in to the VDI
workstation (“bootstorm”) becomes a major issue.

Persistent vs. Non-Persistent VDI
Persistent VDI is a virtual desktop solution where the state of the virtual machine acts like any other
traditional desktop and the changes made to the system survive logoff of the end user. Persistent VDI
desktops are “assigned” to an end user so that they are always using the same virtual desktop image each
time they connect.

Persistent VDI is a one-to-one desktop image; each image is a unique desktop and consumes
approximately 20GB – 40GB of storage. For a VDI deployment of 1000 persistent desktops, the storage
demand is about 30TB. Not only is the storage cost extremely high, but the IOPs demand on the storage is
the same as non-persistent.

In non-persistent, or stateless VDI, end users access a shared image that is used to create many identical
desktops. User changes to the desktop are not saved, and user personality information and data locations
are redirected to central storage locations. Stateless VDI saves significant amounts of SAN-based storage
since hundreds of desktops are created using a single desktop image or collection of images, and only the
uniqueness of each (the “delta”) is temporarily stored while the user is connected. Upon user logoff, the
desktop uniqueness storage is flushed and the virtual desktop returns to a previous, pristine state.

	
 Static	
 Memory	
 Dynamic	
 Memory	

Host	
 Memory	
 Capacity	
 96GB	
 96GB	

VM	
 Memory	
 Configuration	
 2	
 GB	
 (Static)	
 1	
 GB	
 Startup,	
 2	
 GB	

Maximum	

Average	
 Memory	
 Usage	
 1.2	
 GB	
 1.2	
 GB	

Total	
 VMs	
 per	
 Host	
 47	
 78	

	

Memory and SSD Optimization

10

Non-persistent VDI is a one-to-many desktop image. Each desktop is sourced from a single read-only
image that contains the OS, and then a small 2GB-4GB “delta” disk that contains the uniqueness for that
system. This results in significantly less storage use; the same 1000 desktop environment would require
only the initial 20GB – 40GB for the read only image, and then approximately 2TB – 4TB for delta disks.

Leveraging SSD for VDI
Non-persistent VDI is the panacea of VDI. It is also the most challenging to attain because of the
applications readiness necessary and the knowledge of the user required to construct a desktop on-
demand. However, non-persistent VDI holds the key to a sound ROI model because of the significantly
reduced storage.

The I/O demand on VDI is the same regardless of persistent or non-persistent models. However, with non-
persistent VDI, the read IOPs are split from the write IOPs onto different disk targets, which allows for the
use of SSD for either read or write IOPs, or even both.

Windows 7 VM generates and average of about 230 read/write IOPs for the boot and login process. Most
of that is read traffic during the boot process, but an average of 13 IOPs is seen during login. Remember, in
VDI, user experience is everything. If 1,000 people log in at the same time, the storage system behind the
VDI solution could see an average of 230,000 IOPs at any given moment, with over 13,000 of those being
write IOPs. 2

SSDs are capable of over 70,000 IOPs per drive, and when aggregated into arrays, can easily top hundreds
of thousands of IOPs. And because of the reduced storage requirements in non-persistent VDI, SSD offers
the best performance per-GB of any storage medium.

 2 Information on IOPs load was obtained from Project VRC testing results. See http://www.projectvrc.com/white-papers for more information.

Memory and SSD Optimization

11

Optimizing Memory and I/O with SQL Server 2012
SQL Server is a key application in the data center that demands precise storage architecture and
memory optimization. SQL Server 2012, as with previous versions, depends heavily on a properly
designed back-end architecture.

Memory Behavior in SQL Server
By default, SQL Server will automatically adjust memory usage based on the available physical
memory and the other running processes in the operating system. In a virtual world, this translates
to the amount of memory confi gured for the virtual machine.

SQL Server memory behavior is controlled by the min server
memory and max server memory settings. By default, max
server memory on a 64-bit server (the maximum setting) defaults
to the total amount of RAM available in the system. If the core
SQL Server service is the only service running on the system
(aside from typical OS services), SQL Server will eventually
consume the majority of RAM available. Other SQL Server
services, such as SQL Server Integration Services (SSIS) or SQL
Server Reporting Services (SSRS), will consume some of the RAM
available to the core SQL Server service, but eventually Windows
Task Managerwill report all memory is being used by the system.

This issue is compounded when more than one SQL instance is
present on the system. Each SQL instance requires its own pool
of memory, and when multiple SQL instances are running on the
same system, the instances will begin to compete for resources.
In the default SQL confi guration, each instance will attempt to
consume as much memory as possible, with neither getting the
proper resources they need to perform optimally.

In a virtual world, VMs can easily be confi gured with any amount
of RAM desired, so this behavior has adverse eff ects on virtual
machines that leverage Dynamic Memory. Hyper-V uses the
memory demand + buff er size to determine the necessary
memory allocation for the VM. As demand increases, Hyper-V
looks at the current allocation and the buff er setting to determine
if the VM needs its memory increased. As more memory is added to the VM, SQL Server sees there’s
free memory and then consumes additional buff er pool space, which in turn causes Hyper-V to

Memory and SSD Optimization

12

re-evaluate the memory buffer and increase the allocation. This stepping effect will lead to the eventual
consumption of memory allocation up to the Hyper-V Maximum Memory setting for the VM.

The answer is either to use a static memory configuration for the virtual machine, configure the SQL max
server memory parameter to control memory use, or both.

Determining Memory Requirements for SQL Server
In most production implementations of SQL Server, disable automatic memory allocation and configure
the desired memory usage. This approach will ensure each instance is contained within a finite memory
space. To determine the proper memory configuration, each instance will need to be run while reviewing
key performance counters over time. Following performance counters will reveal the required memory
under different conditions.

Start with a baseline amount of memory in the system to provide adequate performance while monitoring
use. Then, monitor the counters in Table 3 and Table 4. The following are system-level memory counters
that can be used to monitor for a low memory condition.

Table 3, Windows memory performance counters

In addition, the following Performance Monitor counters are used to monitor the amount of memory
being used by SQL Server:

Performance	
 Counter	
 Measurement	
 Guidance	

Memory	
 à 	

Available	
 Bytes	

The	
 number	
 of	
 bytes	
 of	

memory	
 are	
 currently	

available	
 for	
 use	
 by	

processes	

SQL	
 attempts	
 to	
 maintain	
 from	
 4-­‐10MB	
 of	
 free	

physical	
 memory.	
 The	
 remaining	
 physical	
 RAM	
 is	

used	
 by	
 the	
 operating	
 system	
 and	
 SQL	
 Server	

Low	
 Available	
 Bytes	
 may	
 indicate	
 that	
 max	
 server	

memory	
 is	
 not	
 configured	

Memory	
 à 	

Pages/sec	
 	

The	
 number	
 of	
 pages	

that	
 either	
 were	

retrieved	
 from	
 disk	
 due	

to	
 hard	
 page	
 faults	
 or	

written	
 to	
 disk	
 to	
 free	

space	
 in	
 the	
 working	
 set	

due	
 to	
 page	
 faults	

Measures	
 the	
 number	
 of	
 pages	
 per	
 second	
 that	
 are	

paged	
 out	
 from	
 RAM	
 to	
 disk.	
 Higher	
 the	
 value,	

higher	
 will	
 be	
 I/O	
 activities	
 and	
 will	
 result	
 in	

decrease	
 in	
 performance.	
 If	
 you	
 have	
 only	
 SQL	

server	
 application	
 running	
 on	
 the	
 server	
 then	
 in	

most	
 cases	
 this	
 value	
 should	
 be	
 near	
 zero.	
 However	

you	
 don’t	
 see	
 much	
 performance	
 degradation	
 until	

it	
 is	
 20,	
 when	
 SQL	
 Server	
 is	
 not	
 the	
 only	
 application.	

Above	
 20,	
 it	
 is	
 an	
 indication	
 to	
 have	
 more	
 RAM	
 on	

the	
 server	

	

Performance	
 Counter	
 Measurement	
 Guidance	

Process	
 à	
 Working	

Set	

The	
 amount	
 of	
 memory	

used	
 by	
 a	
 specific	

process	
 (SQL)	

If	
 consistently	
 below	
 the	
 amount	
 of	
 memory	

configured	
 for	
 the	
 SQL	
 instance(s)	
 (min	
 server	

memory	
 and	
 max	
 server	
 memory),	
 SQL	
 is	
 configured	

for	
 more	
 memory	
 than	
 required.	
 	

SQL	
 Server	
 à	
 Buffer	

Manager	
 à	
 Buffer	

Cache	
 Hit	
 Ratio	

Indicates	
 the	

percentage	
 of	
 pages	

found	
 in	
 the	
 buffer	

cache	
 without	
 having	
 to	

read	
 from	
 disk	

A	
 ratio	
 of	
 90	
 percent	
 or	
 higher	
 is	
 optimal.	

If	
 below,	
 add	
 memory	
 until	
 this	
 value	
 is	
 consistently	

greater	
 than	
 90	
 percent	

SQL	
 Server	
 à	

Memory	
 Manager	
 à	

Total	
 Server	
 Memory	

(KB)	
 	

The	
 amount	
 of	
 memory	

SQL	
 has	
 committed	

using	
 the	
 Memory	

Manager	

If	
 the	
 Total	
 Server	
 Memory	
 (KB)	
 counter	
 is	

consistently	
 high	
 compared	
 to	
 the	
 amount	
 of	

physical	
 memory	
 in	
 the	
 system,	
 it	
 could	
 indicate	

that	
 more	
 memory	
 is	
 required.	

SQL	
 Server	
 à	

Memory	
 Manager	
 à	

Free	
 Memory	
 (KB)	

The	
 amount	
 of	

committed	
 memory	

currently	
 not	
 used	
 by	

SQL	

Indicative	
 of	
 too	
 much	
 memory	
 in	
 the	
 system	
 based	

on	
 the	
 workload;	
 however,	
 without	
 configuring	
 max	

server	
 memory,	
 this	
 will	
 likely	
 be	
 unreliable	

	

Memory and SSD Optimization

13

Table 4, SQL Server memory performance counters

Use these counters to determine the proper values for min server memory and max server memory on
each SQL instance.

Optimizing Storage Performance in SQL Server
While memory will affect SQL performance, a slow disk subsystem will create issues just as easily. Given
SQL Server’s heavy storage I/O requirements, storage environments must be carefully designed to ensure
sustained performance.

The evolution of SSDs has become a game-changer for SQL performance; read and write performance
of a few SSD drives rival that of large-scale SAN environments with high numbers of spindles. When
architecting storage infrastructures supporting SQL Server, there are a variety of areas that come into play:

	 •			Placement	of	the	databases	and	the	transaction	logs
	 •			Placement	of	the	Tempdb

SSDs present unparalleled read and write performance characteristics. Each database has specific
characteristics that will determine if SSD is a good fit. Static databases that store large amounts of
historical data may not be good candidates for SSD since there won’t be high I/O demands. The cost per
GB of SSD is higher than mechanical storage, and historical data that does not require frequent access will
not benefit from SSD. The following sections provide recommendations for leveraging SSDs with various
SQL components.

Note: Not all SSDs are ideal for server use. Look for SSDs such as Kingston’s Enterprise line of SSDs
are designed with premium NAND components and optimized SSD controllers Server environments
that require higher durability and reliability.

Performance	
 Counter	
 Measurement	
 Guidance	

Process	
 à	
 Working	

Set	

The	
 amount	
 of	
 memory	

used	
 by	
 a	
 specific	

process	
 (SQL)	

If	
 consistently	
 below	
 the	
 amount	
 of	
 memory	

configured	
 for	
 the	
 SQL	
 instance(s)	
 (min	
 server	

memory	
 and	
 max	
 server	
 memory),	
 SQL	
 is	
 configured	

for	
 more	
 memory	
 than	
 required.	
 	

SQL	
 Server	
 à	
 Buffer	

Manager	
 à	
 Buffer	

Cache	
 Hit	
 Ratio	

Indicates	
 the	

percentage	
 of	
 pages	

found	
 in	
 the	
 buffer	

cache	
 without	
 having	
 to	

read	
 from	
 disk	

A	
 ratio	
 of	
 90	
 percent	
 or	
 higher	
 is	
 optimal.	

If	
 below,	
 add	
 memory	
 until	
 this	
 value	
 is	
 consistently	

greater	
 than	
 90	
 percent	

SQL	
 Server	
 à	

Memory	
 Manager	
 à	

Total	
 Server	
 Memory	

(KB)	
 	

The	
 amount	
 of	
 memory	

SQL	
 has	
 committed	

using	
 the	
 Memory	

Manager	

If	
 the	
 Total	
 Server	
 Memory	
 (KB)	
 counter	
 is	

consistently	
 high	
 compared	
 to	
 the	
 amount	
 of	

physical	
 memory	
 in	
 the	
 system,	
 it	
 could	
 indicate	

that	
 more	
 memory	
 is	
 required.	

SQL	
 Server	
 à	

Memory	
 Manager	
 à	

Free	
 Memory	
 (KB)	

The	
 amount	
 of	

committed	
 memory	

currently	
 not	
 used	
 by	

SQL	

Indicative	
 of	
 too	
 much	
 memory	
 in	
 the	
 system	
 based	

on	
 the	
 workload;	
 however,	
 without	
 configuring	
 max	

server	
 memory,	
 this	
 will	
 likely	
 be	
 unreliable	

	

@	

Memory and SSD Optimization

14

User Databases
User database I/O performance requirements will vary on a case-by-case basis. Some databases are very
write intensive while others are more read-oriented. A properly design SQL database will include the
use of indexes that speed common lookups, and the allocated buffer space in memory should handle
most read operations. Therefore, user databases can be stored on traditional mechanical storage in the
necessary RAID configuration for performance and redundancy.

Transaction Logs
Transaction logs use sequential writes in operation. Performance of transaction logs is paramount for fast
database operation, so SSD is a perfect solution. Transaction logs require redundancy, so SSDs should be
arranged in a RAID array to provide resiliency.

In situations where multiple databases are hosted on a centralized SQL Server or instance, the best practice
has historically been to locate each database’s transaction log on a separate array or disk to optimize their
sequential I/O characteristics; combining them would essentially turn the collection of transaction logs
into a large random-I/O scenario, which is less than optimal for mechanical drives.

The performance of SSD can really be exploited by leveraging a single SSD array for all transaction logs
since SSDs excel at random I/O.

TempDB
The Tempdb system database is a global resource available to all users connected to an instance of SQL
Server. Tempdb is used for the following:

	 •			Temporary	user	objects,	such	as:	temporary	tables,	temporary	stored	procedures,	or	table	variables
	 •			Internal	objects	created	by	the	SQL	database	engine	(working	tables	to	store	intermediate		
 results/sorting)
	 •			Some	instances	of	row	versions	that	are	generated	by	data	modification	transactions

Tempdb is subject to high-I/O, but is only temporary holding space. No real database data is permanently
stored here and backups are not permitted. Each time the SQL instance is started, a fresh version of
tempdb is created.

While tempdb doesn’t require high resiliency, it is subject to performance issues if the underlying storage
can’t keep up with the workload. Tempdb is subject to a high write I/O, and its relatively low requirement
for resiliency makes it a perfect candidate for SSD storage.

Virtualizing SQL Server
While Microsoft fully supports virtualizing SQL, many administrators have held off due to lack of confidence
in sustained performance in a virtual state. As discussed in the beginning of this paper, Hyper-V is

Memory and SSD Optimization

15

capable of running extremely large virtual machines. From a capacity perspective, Hyper-V 2012 is more
than capable of running even the largest SQL servers. The key is in the level of oversubscription and
guaranteeing that the resources required to effectively run a SQL server are available when the system
needs it.

Understanding NUMA architecture is important to designing a powerful SQL platform (see page 4). In
Hyper-V 2012, guest operating systems are NUMA-aware. Since SQL Servers often require large amounts
of memory, ensure that the VM hardware will properly align to the NUMA architecture of the underlying
hosts. For example, if a Hyper-V host only contains 96GB RAM, creating a 64GB SQL VM will result in
immediate NUMA spanning since the most memory allocated to a single NUMA node is 48GB. To prevent
NUMA spanning altogether, disable it in the Hyper-V host for critical SQL VMs with large amounts of
memory.

Lastly, be cautious of oversubscribing a Hyper-V host that is running SQL VMs. The allure of server
virtualization is the ability to consolidate multiple physical servers into one, and it isn’t uncommon to see
consolidation ratios of 20:1. However, server consolidation is about creating efficiency in leveraging idle
time to run other workloads, so for a system that only requires 5% of a CPU is idle the other 95% of the
time, during which time Hyper-V can run other VMs.

If a SQL Server requires 50% of a physical server’s CPUs to run effectively, then it will require the same
CPU utilization in a virtual state. That means consolidation ratios will be lower on Hyper-V hosts that run
high-utilization SQL VMs. When virtualizing SQL, do not oversubscribe CPU capabilities of the Hyper-V
hosts, and leverage Hyper-V’s ability to adjust the CPU and memory priority so that the SQL VMs receive
preferential access to those resources.

Memory and SSD Optimization

16

Summary
Memory and storage are two key areas of impact with regards to virtualization and SQL Server workloads.
Windows Server 2012 brings a plethora of new capabilities and performance improvements that make
optimization critical.

Use the following guidance discussed in this paper for memory optimization.

•	For	physical	server	provisioning,	always	ensure	memory	is	populated	properly	in	the	memory	banks		
 following triple-channel or quad-channel memory architecture and NUMA.
 Visit http://www.kingston.com/us/business/server_solutions for more information on optimizing server
 configuration for performance.

•	When	leveraging	Hyper-V,	use	Dynamic	Memory	to	ensure	the	investment	in	memory	is	used	most	
 effectively. However, use care with workloads that may have memory configuration settings that are
 not configured optimally, such as database applications – these could lead to unpredictable results with
 Dynamic Memory use.

Always understand the true memory and storage performance requirements of any workload to be
virtualized.

•	Consider	placing	guest	paging	files	on	separate	VHDs	housed	on	SSDs,	particularly	for	critical	workloads.		
 This will ensure that if Hyper-V host memory becomes constrained, resulting in-guest paging at the best
 possible performance. Also consider using SSDs for Hyper-V Smart Paging files to optimize performance
 in memory constrained situations.

•	When	virtualizing	SQL,	do	not	oversubscribe	CPU	and	memory	on	the	server.		Analyze	the	SQL	Server	
 instance(s) to determine the memory requirements and then configure the max server memory setting
 to prevent unnecessary consumption of memory for the buffer pool.

Hyper-V Dynamic Memory may or may not benefit SQL Server. If the instances are properly configured for
max server memory, then the amount of memory required for the VM is predictable and Dynamic Memory
may not be required.

If the max server memory setting will not be configured, use static memory in the VM configuration; do
not use Dynamic Memory, and only place one SQL instance on a server.

•	Use	server-grade	SSDs	(such	as	Kingston	E100)	for	specific	SQL	databases	or	transaction	logs.		The	SQL	
 Tempdb will benefit from SSDs’ performance and can easily be leveraged in a local server to avoid steep
 SAN costs.

Rather than placing each database’s transaction logs on a different storage volume, consolidate them onto
a single SSD array to benefit from the increased performance.

•	Non-persistent	VDI	storage	performance	will	benefit	significantly	from	placing	differencing	(delta)	disks	on	SSD	
 storage. And while challenging, non-persistent VDI is the target model for a successful ROI on VDI solutions.

Memory and SSD Optimization

17

About the Authors
Michael Burke is the CTO of VDX, a leading professional services company headquartered in the Northeast
United States focusing on desktop transformation and private cloud. Burke has over 10 years’ experience
working closely with Microsoft products. He has written many technical articles and whitepapers around
Microsoft products and technologies and has been a guest speaker at several international conferences on
the subject.

William Gray is a Solutions Architect at VDX. William has over 7 years’ experience working with Microsoft
products. He has worked with clients in a variety of industries building comprehensive, next generation
solutions with Microsoft technologies.

